
Lecture 2: Protoplanetary discs

1 Disc formation and the angular momentum problem

Obervations of both the solar system and exo-planetary systems suggest that planets form in discs
around young stars, so in order to understand how planets form it is first necessary to consider how
stars form. Naively we might assume that stars are able to form by simple gravitational collapse
of gas clouds, but we must also consider the effects of rotation. “Cores” in star-forming molecular
clouds are observed to have angular velocities of order Ωc ∼ 10−14–10−13s−1, and we can thus
compute the angular momentum of a core by appealing to the Jeans length

RJ ≃ cs√
Gρ

(1)

and Jeans mass

MJ ≃ c3s
G3/2ρ1/2

. (2)

(Here we have neglected order-of-unity constants for clarity.) Molecular clouds have temperatures
T ≃ 10K, yielding sound speeds cs ≃ 0.2km/s. We therefore see that forming a star of solar mass
by Jeans collapse requires densities ρ & 10−19g/cm3, and requires that material fall inwards from
distances of order RJ ∼ 0.1pc. The specific angular momentum of the collapasing core is thus

jc ≃ ΩcR
2
J ≃ 1021 − 1022cm2/s . (3)

By contrast, the break-up velocity of a star (the maximum velocity at which it can rotate) can be
computed by equating centrifugal acceleration with gravity thus

Ω2
br∗ =

GM∗

r2∗
(4)

Ωb =

√

GM∗

r3∗
. (5)

A star like the Sun therefore has a break-up velocity Ωb ∼ 10−3s−1 (corresponding to a few hundred
km/s), and a break-up specific angular momentum (assuming solid-body rotation) of

jb ≃ Ωbr
2
∗ ≃ 1018 − 1019cm2/s . (6)

Thus jb ≪ jc, and most stars in fact rotate well below break-up. We see therefore that young
stars have much lower angular momenta than the gas clouds from which they form, and how this
angular momentum is lost is the so-called “angular momentum problem” of star formation.

In Lecture 1 we discussed the various observations which suggest that the Solar System formed
from a single rotating disc, and we can similarly appeal to discs as a solution to the angular
momentum problem of star formation. If we assume that discs around young stars are in Keplerian
rotation, we can estimate their typical size from the angular momentum of the system. In a
Keplerian orbit the specific angular momentum of a mass orbiting a star of mass M∗ at radius R is

jK =
√

GM∗R (7)

and if we set jK = jc we find that protostellar discs around solar-mass stars should have typical
sizes of

R =
j2c

GM∗

∼ 103 − 104AU . (8)
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Star formation is in fact much more dynamic than the process we have described here, and in-
teractions between protostars and their surroundings can redistribute some of the excess angular
momentum. Nevertheless, when we observe young stars we see resolved discs with sizes of 100–
1000AU, and numerical simulations of star formation typically produce discs of similar sizes. Disc
accretion is thus crucial to the star formation process, and planet-forming discs are an inevitable
consequence of star formation.

2 Observations of protoplanetary discs

The first protoplanetary discs were observed in the 1980s, and since then we have amassed a huge
body of research into their structure and evolution. The subject of protoplanetary disc observations
is large enough to form an entire lecture course by itself, so here we merely summarise the most
relevant points. The bulk of the disc mass is gas (mostly molecular hydrogen), but the trace dust
component dominates the opacity. The dust is therefore crucial for disc thermodynamics (and for
planet formation), and despite representing only around 1% of the total mass the dust is also much
easier to observe than the gas.

Young, low-mass stars are traditionally classified by the shape of their infrared (IR) spectral
energy distribution (SED), which is typically measured through broad-band photometry (allowing
large numbers of objects to be observed simultaneously). The SED classification scheme, originally
proposed by Lada (1987) and subsequently updated several times, is based on the IR spectral index

αIR =
d log(λFλ)

d log λ
. (9)

In practice αIR is usually measured between two fixed wavelengths: early work used 2.2µm (K-
band) and 14µm, but more recent studies generally use one of the Spitzer bands for the long-
wavelength point (usually 24µm). Light from the central (proto-)star is absorbed by circumstellar
dust and re-emitted at longer wavelengths, so a “redder” SED, resulting from more material in
the circumstellar environment, is thought to be indicative of an earlier evolutionary phase. The
modern classification scheme is as follows:

• Class 0: SED peaks in the far-IR or sub-mm, with no measurable flux being emitted in the
near- or mid-IR. These objects are typically interpreted as proto-stars which are still in the
collapse phase.

• Class I: SED peaks in the mid- or far-IR, with a rising SED slope (αIR & 0) in the near-IR.
These objects are inferred to be embedded protostellar discs with substantial circumstellar
envelopes.

• Class II: SED is declining in the near- and mid-IR, but shows significant excess emission
over the stellar photosphere (−1.5 . αIR . 0). These are optically-visible pre-main-sequence
stars with a surrounding disc, but little or no remaining envelope.

• Class III: SED is effectively that of a stellar photosphere, with αIR ∼ −1.5. These are
pre-main-sequence stars which have lost their discs.

Additional sub-classes exist (notably “flat spectrum” sources between Classes I & II, and “tran-
sitional discs” between Classes II & III), but these objects are relatively rare. The relationship
between the SED classification scheme and the physical state of the YSO is now supported by
a large body of evidence, and although there is not a perfect one-to-one correspondence between
SED class and evolution the term “Class X” is commonly used to refer to the physical state of the
object. For the purposes of this course we are most interested in Class II & III objects, but we
will also discuss Class I objects. Note also that Classes II & III correspond almost perfectly with
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an older classification scheme, based on the strength of optical emission lines: objects with Hα
equivalent widths & 10Å are referred to as Classical T Tauri stars (CTTs), while objects with Hα
equivalent widths . 10Å are referred to as Weak-lined T Tauri stars (WTTs). We now understand
that the observed emission lines are primarily due to accretion on to the stellar surface: almost all
disc-bearing Class II sources are CTTs, while disc-less Class III are usually WTTs.

Observations of dust continuum emission are the most straightforward means of observing pro-
toplanetary discs, and we now have large statistical samples across a broad range of wavelengths.
Near- and mid-IR emission comes from the inner disc, at radii . 1AU, where the disc is optically
thick, while longer wavelength emission primarily comes from the colder outer disc. At mm wave-
lengths the emission is optically thin, and (sub-)mm observations allow us to measure the total
(dust) mass in the disc. Estimating disc masses in this manner is subject to significant uncertainties
(particularly in the dust-to-gas ratio), but standard assumptions derive disc masses which range
from & 0.1M⊙to . 0.001M⊙. The median disc mass (for Class II sources / CTTs) derived in this
manner is approximately 1% of the stellar mass (i.e., ∼10MJup for solar-mass stars).

Observing the gaseous component of the disc is more difficult, due to the fact that H2 has
no bright emission lines (because hydrogen is a homo-nuclear molecule with no permanent dipole
moment). In general we are limited to detecting H2 emission from the hot disc surface (a thin
layer, strongly irradiated by the star), and/or detecting emission from (trace) heavier elements
and molecules (notably CO). Our primary means of detecting the bulk of the disc gas is observing
signatures of accretion on to the stellar surface: typical accretion rates1 for Class II sources lie
in the range 10−7–10−9M⊙yr

−1. The fact that discs are observed to accrete at such rates tells us
that they must evolve on ∼Myr time-scales (as Md/Ṁ ∼ 106yr), and we discuss accretion and disc
evolution in more detail below.

These observations also tell us that essentially all young stars form with discs. The disc fraction
in the youngest (. 1Myr) star clusters is close to 100%, but the number of discs drops rapidly with
time and in ∼ 10Myr-old clusters very few discs remain. This result holds across the full range of
disc signatures, and again implies that typical protoplanetary disc lifetimes are a few Myr. This
in turn sets a strict limit on the process(es) of planet formation: after ∼10Myr T Tauri stars have
insufficient gas to form even Neptune-mass planets, so giant planets must be able to form within
the lifetimes of protoplanetary discs, on ∼Myr time-scales.

3 Protoplanetary disc structure

The equation of motion for an inviscid, non-magnetised fluid is

∂v

∂t
+ (v.∇)v = −1

ρ
∇P −∇Φ , (10)

where v is the fluid velocity, ρ the density, P the pressure and Φ the gravitational potential. We
consider a disc as a stationary, axisymemetric flow around a central gravitating mass, and therefore
work in cylindrical co-ordinates (R, z, φ)2. In the limit of a low-mass disc the potential is simply
Φ = −GM∗/r, and the radial component of the equation of motion is an expression of centrifugal
balance

v2φ
R

=
1

ρ

dP

dR
+

GM∗

R2
. (11)

If we neglect the gas pressure, we find that the azimuthal velocity vφ is simply the Keplerian
velocity vK =

√

GM∗/R.
In general, the pressure in a disc decreases outwards (as both the surface density and temper-

ature are typically decreasing functions of radius). The dP/dR term in Equation 11 is therefore

1Note, however, that the accretion is highly variable, especially during the earlier evolutionary phases.
2Note that I use lower-case r for spherical radius and upper-case R for cylindrical radius.
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negative, and the orbital velocity of the gas is sub-Keplerian. How sub-Keplerian the gas is de-
pends on radial temperature and density structure of the disc, but for typical parameters we find
that vφ/vK ≃ 0.995. This is negligible for gas dynamics, but has important consequences for solid
bodies in the disc (as we will see in Lecture 3).

The vertical component of Equation 10 is a statement of hydrostatic balance

1

ρ

dP

dz
= −dΦ

dz
=

d

dz

(

GM∗

r

)

=
d

dz

(

GM∗

(R2 + z2)1/2

)

, (12)

with pressure supporting the disc against gravity. In the limit of a thin disc (z ≪ R)3, this reduces
to

1

ρ

dP

dz
= −GM∗z

R3
= −Ω2

Kz , (13)

where ΩK = vK/R is the Keplerian orbital frequency. If we then assume that the disc is vertically
isothermal, the equation of state is P = c2sρ and we have

1

ρ

dρ

dz
=

d log ρ

dz
= − z

H2
, (14)

where we have defined the disc scale-height H = cs/Ω. We can integrate to find the vertical
structure

ρ(z) = ρ0 exp

(

− z2

2H2

)

. (15)

A vertically isothermal disc therefore has a Gaussian density profile, with scale-height H (so 68%
of the disc mass lies within ±H of the midplane). The midplane density ρ0 is related to the local
surface density Σ by the normalisation condition

ρ0 =
Σ√
2πH

. (16)

The disc structure H(R) is primarily determined by the radial temperature profile of the disc
T (R). The low accretion rates in protoplanetary discs mean that accretion (viscous) heating is
usually negligible, and the disc’s heating is instead dominated by irradiation from the central
star4. For a razor-thin disc, we can compute the radial temperature profile by considering the flux
absorbed by a patch of the disc at radius r. The star has radius r∗ and effective temperature T∗,
so if we assume a constant surface brightness we have I∗ = (1/π)σSBT

4
∗ (where σSB is the Stefan-

Boltzmann constant). The flux F absorbed by the disc is simply the integral of the brightness over
the fraction of the stellar surface “seen” by the disc, so

F =

∫

I∗ sin θ cosφdΩ , (17)

where dΩ = sin θdθdφ is the (infinitesimal) solid angle element. If we consider only one hemisphere
of the star (and therefore only the flux absorbed by one surface of the disc), we see that the limits
on the integral are −π/2 ≤ φ ≤ π/2 and 0 ≤ θ ≤ sin−1(r∗/R). Substituting, we find that

F = I∗

∫ π/2

−π/2
cosφdφ

∫ sin−1(r∗/R)

0
sin2 θdθ . (18)

3In deriving Equations 11 & 12 we have formally assumed that the radial gas velocity vR ≪ cs ≪ vφ. The
first inequality requires that any radial gas flow (i.e., accretion) be very sub-sonic, while the second inequality is
essentially a re-statement of the thin disc approximation (and also implies that the pressure term in Equation 11 is
small.) Observations of disc aspect ratios and accretion rates confirm that both of these approximations are justified
for protoplanetary discs.

4Accretion heating dominates at small radii and high accretion rates, & 10−7M⊙yr−1. These conditions are only
satisfied in the inner disc (. 1AU) and in the early stages of disc evolution.
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This integral is ugly but basically straightforward [use Pythagoras to evaluate cos(sin−1 x)], and
we find that

F = I∗

[

sin−1(r∗/R)−
(r∗
R

)

√

1−
(r∗
R

)2
]

. (19)

In thermodynamic equilibrium this absorbed flux is equal to the flux radiated by the disc. If the
disc has local temperature T (r) then F = σSBT

4 and

(

T (R)

T∗

)4

=
1

π

[

sin−1(r∗/R)−
(r∗
R

)

√

1−
(r∗
R

)2
]

. (20)

This expression is not particularly instructive, but if we expand as a Taylor series5 in the far-field
limit (r∗/R ≪ 1), we find that

T (R) ∝ R−3/4 . (21)

This is the radial temperature profile for a flat, optically-thick reprocessing disc6, and by assuming
that c2s ∝ T we find that H/R ∝ R1/8. This solution is therefore not self-consistent, as the disc is
not flat (the aspect ratio H/R is an increasing function of radius). Self-consistent solutions must
take account of the relationship between temperature and disc thickness, and also the fact that the
disc sub-tends a larger solid angle at larger radii. (This is most readily done by defining a flaring
angle α = d/dR(H/R), and modifying Equation 17 accordingly.)

We can use the Planck function and integrate Equation 19 to find the disc SED (we find
λFλ ∝ λ−4/3), but it was recognised more than 30 years ago that a flat reprocessing disc produces
substantially less IR emission than is typically observed in Class II discs7. We now understand that
protoplanetary discs are flared, with H/R increasing significantly with radius: the disc is relatively
thicker at larger radii, and thus intercepts (and re-emits) a larger fraction of the stellar flux than a
thin disc (leading to a larger IR excess). For a vertically isothermal disc the self-consistent solution
is T ∝ R−1/2, which gives H/R ∝ R5/4: the temperature profile is shallower than that of a flat
disc, and the disc flares substantially with radius. Modern disc models relax the assumption of
vertical isothermality (see, e.g., the “two-layer” model of Chiang & Goldreich 1997), and include
additional complications such as accretion heating and realistic opacities. Detailed study of disc
structure remains an active area of research.

4 Protoplanetary disc evolution

4.1 The viscous disc

In order to determine how a disc evolves, we first consider mass and angular momentum conser-
vation in a thin annulus. We assume that the disc is axisymmetric, with surface density Σ(R).
Accretion is a radial flow of gas, and we denote the radial velocity as vR(R)8; by convention, posi-
tive vR is in the outward direction (accretion therefore has vR < 0). We then consider an annulus
at radius R with thickness ∆R. The rate of mass flow through the inner edge of the annulus is

Ṁinner = 2πRΣ(R)vR(R) , (22)

and the rate of mass flow through the outer edge of the annulus is

Ṁouter = 2π(R+∆R)Σ(R+∆R)vR(R+∆R) . (23)

5The relevant Taylor series expansion is sin−1 x = x+ x3/6 + x5/40. . .
6Coincidentally, this power-law scaling is the same as that found in a self-luminous accretion disc.
7The flat disc solution for λFλ has αIR = −4/3, which is close to the Class II/III boundary and much steeper

(“bluer”) than is typical for Class II objects.
8Note that, as before, we assume that vR ≪ cs ≪ vφ.
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The difference between these two quantities is the rate of change of mass in the annulus, so

2πR∆R
∂Σ

∂t
= Ṁinner − Ṁouter , (24)

and we can substitute to find

R
∂Σ

∂t
= −(R+∆R)Σ(R+∆R)vR(R+∆R)−RΣ(R)vR(R)

∆R
. (25)

We can then take the limit ∆R → 0 to find

R
∂Σ

∂t
+

∂

∂R
(RΣvR) = 0 , (26)

which is the equation of mass continuity for a thin disc.
If the orbital frequency is Ω(R) then the angular momentum per unit area is R2ΩΣ, and

a similar analysis yields a corresponding equation for the conservation of angular momentum.
However, in this case we must consider the effects of torques on the annulus, so the equation for
angular momentum conservation becomes

R
∂

∂t

(

R2ΩΣ
)

+
∂

∂R

(

R2ΩRΣvR
)

=
1

2π

∂G

∂R
. (27)

Here G(R) is the torque: it appears as a radial derivative, as we are interested only in the differential
torque across the annulus. (If the torque is constant across the annulus then ∂G/∂R = 0 and there
is no net change in the angular momentum.)

At this point we can make little further progress without making some assumptions about the
origin of the torque G. The simplest assumption is to assume that the torques are due to an
ordinary fluid viscosity: in that case, the shearing nature of a Keplerian disc will result in viscous
torques between adjacent annuli (as they have different azimuthal velocities). The viscous torque
G is therefore

G = 2πR.RνΣ
dΩ

dR
.R (28)

Here ν is the kinematic viscosity. The second term is the viscous force per unit length, the first
term comes from integrating around the annulus, and the final factor of R is the lever arm of the
torque. The fact that G ∝ dΩ

dR reflects the fact that the viscous torque is only non-zero if the disc
has differential rotation. (If Ω is constant, the disc rotates as a solid body and there are no viscous
torques between adjacent annuli.) We substitute this expression for G into Equation 27 to find

∂

∂t

(

R2ΣΩ
)

+
1

R

∂

∂R

(

R3ΣvRΩ
)

=
1

R

∂

∂R

(

R3νΣ
dΩ

dR

)

, (29)

which is the equation for angular momentum conservation in a viscous accretion disc. We can then
combine Equations 26 & 29 to eliminate the radial velocity vR, and after some algebra we find

∂Σ

∂t
= − 1

R

∂

∂R

[

1
∂
∂R(R

2Ω)

∂

∂R

(

R3νΣ
dΩ

dR

)

]

. (30)

This is the general equation governing the evolution of a viscous accretion disc with an arbitrary
rotation profile Ω(R). If we further assume that the disc is in Keplerian rotation we can substitute
Ω =

√

GM∗/R3 and find
∂Σ

∂t
=

3

R

∂

∂R

[

R1/2 ∂

∂R

(

νΣR1/2
)

]

. (31)
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4.2 Viscous disc solutions

The simplest solution to Equation 31 is a steady-state solution (which implicitly requires a source
term as the outer boundary condition). We can find the steady-state solution by considering
Equation 29. We set the ∂/∂t terms to zero and note that in a steady state the accretion rate
Ṁ = −2πRΣvR is constant. We then integrate with respect to R, and if we further assume that
there is no torque exerted at the inner boundary (i.e., dΩ/dR = 0 at R = Rin), we find

−R2ΩṀ +R2
inΩinṀ = 2πR3νΣ

dΩ

dR
. (32)

Substituting for Ω =
√

GM∗/R3 gives

Σ(R) =
Ṁ

3πν(R)

(

1−
√

Rin

R

)

. (33)

Away from the boundary we have 3πνΣ = Ṁ , so we see that the viscosity ν(R) is critical in
determining the mass distribution in the disc. Further insight, however, requires at least some
understanding of the viscosity.

The form of Equation 31 equates a single time derivative of Σ to a double radial derivative,
which we recognise as a diffusion equation. Equation 31 can be re-cast using different variables to
make the diffusive form more explicit9: the diffusion constant is proportional to the viscosity ν.
The characteristic diffusion time-scale (neglecting factors of order unity) is

tν ≃ R2

ν
. (34)

This is more commonly referred to as the viscous time-scale, and is the time required for viscous
accretion to alter the surface density (locally) by a factor of order unity.

Equation 31 is in general non-linear, though it becomes linear is the viscosity ν is independent
of Σ. Even in this case, however, analytic solutions are rare; most problem require numerical
solution. The simplest analytic solution is that of the “spreading ring”. This case assumes a
constant viscosity ν, and an initial surface density that is a δ-function at R = 1. The analytic
solution is a modified Bessel function (see, e.g., Fig.1 in Pringle 1981), and the diffusive nature of
the disc equations is readily apparent. Angular momentum is transported outwards by viscosity,
allowing mass to accrete (though angular momentum conservation prevents all of the mass from
ever being accreted). In the limit t → ∞ an infinitesimal fraction ǫ of the mass “spreads” to large
radii (carrying all of the initial angular momentum), allowing (1− ǫ) of the mass to accreted on to
the central point mass.

More relevant for the study of protoplanetary discs is the similarity solution derived by Lynden-
Bell & Pringle (1974). They showed that is the viscosity is a time-independent power-law ν(R) ∝
Rγ , then solutions of the form

Σ(R, t) =
Md(2− γ)

2πR2
0r

γ
τ

−(5/2−γ)
2−γ exp

(

−r2−γ

τ

)

, (35)

satisfy Equation 31. Here Md is the initial disc mass, and the scale radius R0 sets the initial disc
size. The dimensionless radius r = R/R0, and the dimensionless time

τ =
t

tν
+ 1 . (36)

9This is left as an exercise – the relevant substitutions are X = 2R1/2 and S = R1/2Σ.
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The viscous scaling time tν is given by

tν =
R2

0

3(2 − γ)2ν0
. (37)

where ν0 = ν(R0). Σ(R, t) therefore has a self-similar form: a power-law Σ ∝ R−γ , exponentially
truncated at large radii. The surface density declines as a power-law in time (as mass is accreted),
and the disc expands to conserve angular momentum. As before, the asymptotic solution is that
almost all of the initial disc mass is accreted, while all of the angular momentum is carried to large
radii by an infinitesimal fraction of the mass.

4.3 The α-prescription

Thus far we have studiously avoided discussion of the viscosity, but we must now stop and consider
the physical origin of the angular momentum transport (and the observed accretion). It is imme-
diately obvious that ν cannot be a simple fluid viscosity: consideration of inter-molecular forces
shows that the typical viscous time-scale at ∼AU radii in protoplanetary discs is & 1013yr! We
therefore require some other source of viscosity in order to explain the observed accretion rates in
young stars (and other accreting systems).

The orbital velocity in a thin disc is highly supersonic [as vφ = (H/R)−1cs], and if molecular
forces are the only source of fluid viscosity then the orbital flow has extremely high Reynolds number
(& 1010). Consequently, it is commonly (though not necessarily correctly) argued that the disc
will be turbulent, and we can therefore appeal to turbulence as the source of angular momentum
transport in accretion discs. This is the essence of the α-disc model, proposed by Shakura &
Sunyaev (1973). They argued that the characteristic length-scale of the turbulent eddies is ∼ H,
and that the characteristic speed of the turbulence is ∼ cs. On dimensional grounds they therefore
proposed that

ν = αcsH , (38)

where α ≤ 1 is a dimensionless parameter that quantifies the strength of the turbulence.
This formalism offers a number of advantages, primarily that the accretion disc equations

become closed if α is known. Without understanding the source of the turbulence, we can estimate
values of α from observations of disc accretion: discs around compact objects (such as dwarf novae
and cataclysmic variables) generally require α & 0.1, while observations of protoplanetary discs
point towards lower values, α ∼ 0.01. The α-prescription also provides some justification for the
power-law viscosity used in the Lynden-Bell & Pringle similarity solution: for constant α, typical
solutions for flaring discs result in power-law indices γ ≃ 1.0–1.5.

5 Turbulence as a mechanism for angular momentum transport

Equation 31 can also be derived directly from the Navier-Stokes equation (see, e.g., Lodato 2008).
This approach is rather more involved and perhaps a little less intuitive, but has the advantage of
identifying the “viscosity” ν with the viscous stress tensor. In the case of a classical shear viscosity
the only non-zero component of the stress tensor is σR,φ, and the vertically integrated stress tensor
can be related to our previous analysis thus

TR,φ = νRΣ
dΩ

dR
. (39)

We have already seen that an ordinary fluid viscosity cannot provide sufficient stress to drive the
observed accretion, but this equation points towards an alternative. If we consider a non-viscous
fluid we can separate the equations into mean and fluctuating parts (e.g., Balbus & Hawley 1998;
Lodato 2008), and in this case we identify TR,φ with correlated fluctuations in the flow. If we then
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compare Equation 39 with the α-prescription, we can relate the α parameter to properties of the
turbulent flow. In the general case that the fluid is both magnetized and self-gravitating, we can
relate α to the various different stresses that arise in the turbulent flow:

α =

〈

δvRδvφ
c2s

−
BrBφ

4πc2s
−

grgφ
4πGρc2s

〉

. (40)

Here the angled brackets represent a (density-weighted) average over time for the various fluctuating
fields in the flow. The first term is the hydrodynamic (Reynolds) stress, the second term the
magnetic (Maxwell) stress, and the third term the gravitational stress, and we therefore see that
turbulence in the disc has the potential to drive angular momentum transport.

It is important to stress at this point that this “turbulent viscosity” is not really a viscosity
at all. In the macroscopic limit the turbulence may behave like a fluid viscosity, but the viscous
approximation does not hold when we consider length scales comparable to that of the turbulence
(i.e., . H). This subtlety can often be glossed over when considering the global evolution of an
accretion disc10, but it is of critical importance for the formation of planets. Microscopic dust
particles only “see” the small-scale structure in the disc, and so we must consider the turbulent
nature of the disc when trying to understand how planets form.

Note also that we have now assigned a rather different meaning to the α parameter. Classical
accretion disc theory uses the α-viscosity to make predictions from the disc equations, and α
is usually regarded as a (free) input parameter to models. By contrast, in Equation 40 α is a
dimensionless measure of how efficiently turbulence transports angular momentum. In a sense,
this approach reverses the direction of causality implied by the α-prescription: α is a property of
the local disc conditions, rather than a parameter which determines these conditions. In practice
this means that α can be measured directly in numerical simulations of turbulent accretion discs.

5.1 The magnetorotational instability

Equation 40 shows us that turbulence in accretion discs can in principle by hydrodynamic, magne-
tohydrodynamic (MHD), or gravitational in origin. Self-gravity is generally only significant in very
massive discs (roughly if Md/M∗ & H/R), and can lead either to angular momentum transport or
fragmentation and gravitational collapse. However, in the Class II phase protoplanetary discs are
not massive enough to be gravitationally unstable, so we defer discussion of gravitational instability
to Lecture 4. In the case of purely hydrodynamic turbulence the stability criterion is simply the
Rayleigh criterion, and instability requires that

d

dR

(

R2Ω
)

< 0 . (41)

The term inside the brackets is the specific angular momentum, which increases with radius in
Keplerian discs. Keplerian accretion discs are therefore linearly stable to hydrodynamic pertur-
bations, and purely hydrodynamic turbulence is not likely to be a significant source of angular
momentum transport11.

By contrast, in the case of a magnetised fluid we recover a different stability criterion (see, e.g.,
Chapter 12 of Pringle & King). In this case the disc is unstable to axisymmetric perturbations if

dΩ2

d lnR
< 0 . (42)

10Note also that a fluid viscosity provides both angular momentum transport and local heating. It is not obvious
that a turbulent “viscosity” behaves in the same manner, and although MHD turbulence often can be approximated
as an α-viscosity the right-hand side of Equation 40 does not necessarily imply local dissipation of energy.

11Some hydrodynamic instabilities, such as the baroclinic instability, can transport angular momentum in Keplerian
discs, but these generally require specific (and often unusual) thermodynamic conditions to be satisfied.
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This condition is satisfied in Keplerian discs, so we expect protoplanetary discs to be linearly
unstable to MHD instabilities. The most promising candidate for driving angular momentum
transport is the magnetorotational instability (MRI). The full derivation of the MRI is beyond the
scope of this course, and in the lecture we will instead discuss a qualitative physical interpretation
of the instability. The interested reader is pointed towards Balbus & Hawley (1991, 1998) & Balbus
(2011) for more detailed discussion.

In a disc threaded by a vertical magnetic field the linear growth of the MRI manifests itself as
so-called “channel flow” solutions, in which vertical layers of the disc move alternately inwards or
outwards. In the vertically averaged sense this does not lead to net transport of angular momentum;
instead we must follow the non-linear development of the instability. This requires numerical
calculations, and numerical simulations of MHD turbulence in discs remains an active area of
research. Current models suggest that the transport is primarily driven by magnetic stresses (i.e.,
the second term on the RHS of Equation 40 dominates), and that in the ideal-MHD limit MRI-
driven turbulence transports angular momentum with efficiencies α ∼ 10−3–10−2.

However, it is unlikely that ideal MHD applies in most protoplanetary discs: all three non-ideal
terms12 are likely to become important in different regions of the disc, and break the ideal coupling
between the magnetic field and the fluid. The level of disc ionization is particularly important: a
fluid must be at least partially ionized in order to couple to a magnetic field, and in an insufficiently
ionized disc Ohmic dissipation acts to suppress the MRI. Again, detailed analysis is beyond the
scope of this course, but it can be shown (e.g., Gammie 1996; Armitage 2010) that in order for
the MRI to operate in protoplanetary discs the ionization fraction in the disc must be & 10−12. In
most astrophysical discs thermal ionization is sufficient to allow the MRI to operate, but despite
the critical ionization fraction being very small indeed13 this condition is frequently not satisfied
in protoplanetary discs. Where the disc is insufficiently ionized we expect a so-called “dead zone”,
where the MRI does not operate. Close to the star thermal ionization is more than sufficient, and
at large radii (where the surface density is low) ionization by cosmic rays provides an ample source
of free electrons (though ambipolar diffusion may suppress the MRI here). At intermediate (∼AU)
radii, however, the disc midplane is likely to be MRI-dead, and in this region we therefore expect
accretion to proceed through a partially-ionized surface layer (e.g., Gammie 1996; Armitage et
al. 2001; Zhu et al. 2009).

However, modern MRI simulations suggest that even this “layered accretion” picture is overly
simplistic, and there is now broad agreement the MRI is likely to be suppressed by either Ohmic
dissipation or ambipolar diffusion over large regions of protoplanetary discs. The details remain
uncertain (they depend crucially on non-ideal MHD and complex thermal/ionization physics, and
are very difficult to model accurately), but the general trend in recent years has been towards an
increasingly pessimistic view of the MRI as a mechanism for driving protoplanetary disc accretion
(except very close to the star). In non-ideal MHD calculations in a local geometry, the combina-
tion of ambipolar diffusion and a net vertical B-field invariably results in a “magneto-centrifugal
wind” being launched from the disc surface layers. Unlike thermal winds (e.g., from photoevapo-
ration), magnetised winds can exert torques on the material that remains in the disc, and recent
simulations suggest that such winds may play a major, and possibly even dominant, role in the
angular momentum evolution of protoplanetary discs (e.g., Bai et al. 2016; see also the discussion
in Turner et al. 2014). Global simulations remain challenging, however, and our understanding of
how protoplanetary discs accrete remains an evolving area of research.

12The three non-ideal MHD effects are Ohmic resistivity (electron-neutral collisions), ambipolar diffusion (electron-
neutral drift) and the Hall effect (electron-ion drift), and all three act to suppress the MRI. Current models (see, e.g.,
Turner et al. 2014) suggest that ambipolar diffusion dominates in the outer disc (≫10AU) while Ohmic dissipation
dominates close to the star (.1AU), with both the Hall and ambipolar terms playing a role at intermediate radii.)

13For typical parameters, this corresponds to an election density of ne ∼ 0.1–10cm−3 at the disc midplane!
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Further Reading

In addition to the main list of references given on the course home-page, the following papers are
particularly relevant to this lecture:
Pringle, Accretion discs in astrophysics, 1981, ARA&A, 19, 137.
Lodato, Classical disc physics, 2008, NewAR, 52, 21.
Armitage, Dynamics of protoplanetary disks, 2011, ARA&A, 49. 195.
Armitage, Physics Processes in Protoplanetary Discs, Saas-Fee lectures, 2015 (arXiv:1509.06382).
Williams & Cieza, Protoplanetary Disks and Their Evolution, 2011, ARA&A, 49, 67.
Balbus & Hawley, A powerful local shear instability in weakly magnetized disks, 1991, ApJ, 376,
p214 (Part I); p223 (Part II).
Balbus & Hawley, Instability, turbulence, and enhanced transport in accretion disks, 1998, Rev.Mod.
Phys, 70, 1.
Dullemond et al., Models of the Structure and Evolution of Protoplanetary Disks, 2007, Protostars
& Planets V, p555.
Natta et al., Dust in Protoplanetary Disks: Properties and Evolution, 2007, Protostars & Planets
V, p767.
Gammie, Layered Accretion in T Tauri Disks, 1996, ApJ, 457, 335.
Balbus, Magnetohydrodynamics of Protostellar Disks, 2011, in “Physical Processes in Circumstellar
Disks around Young Stars”. (arXiv:0906.0854)
Armitage et al., Episodic accretion in magnetically layered protoplanetary discs, 2001, MNRAS,
324, 705.
Bai et al., Magneto-thermal Disk Winds from Protoplanetary Disks, 2016, ApJ, 818, 152
Zhu et al., Two-dimensional Simulations of FU Orionis Disk Outbursts, 2009, ApJ, 701, 620.
Chiang & Goldreich, Spectral Energy Distributions of T Tauri Stars with Passive Circumstellar

Disks, 1997, ApJ, 490, 368.
Lada, Star formation - From OB associations to protostars, 1987, IAU Symposium 115, p1.

Finally, the following chapters in Protostars & Planets VI provide up-to-date (and more detailed)
reviews of many of the issues discussed here:
Turner et al., Transport and accretion in planet-forming disks, arXiv:1401.7306.
Alexander et al., The dispersal of protoplanetary disks, arXiv:1311.1819.
Testi et al., Dust evolution in protoplanetary disks, arXiv:1402.1354.
Dutrey et al., Physical and chemical structure of planet-forming disks probed by millimeter obser-

vations and modelling, arXiv:1402.3503.
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